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Abstract— Image quality assessment (IQA) has attracted more
and more attention due to the urgent demand in image services.
The perceptual-based image compression is one of the most
prominent applications that require IQA metrics to be highly
correlated with human vision. To explore IQA algorithms that are
more consistent with human vision, several calibrated databases
have been constructed. However, the distorted images in the exist-
ing databases are usually generated by corrupting the pristine
images with various distortions in coarse levels, such that the
IQA algorithms validated on them may be inefficient to optimize
the perceptual-based image compression with fine-grained quality
differences. In this paper, we construct a large-scale image
database which can be used for fine-grained quality assessment of
compressed images. In the proposed database, reference images
are compressed at constant bitrate levels by JPEG encoders with
different optimization methods. To distinguish subtle differences,
the pair-wise comparison method is utilized to rank them in
subjective experiments. We select 100 reference images for the
proposed database, and each image is compressed into three
target bitrates by four different JPEG optimization methods,
such that 1200 distorted images are generated in total. Sixteen
well-known IQA algorithms are evaluated and analyzed on the
proposed database. With the devised fine-grained IQA database,
we expect to further promote image quality assessment by shifting
it from a coarse-grained stage to a fine-grained stage. The
database is available at: https://sites.google.com/site/zhangxinf07/
fg-iqa.

Index Terms— Image quality assessment, peceptual image
compression, image database, subjective assessment, fine-grained
distortion levels.

I. INTRODUCTION

IMAGE quality assessment (IQA) aims to measure the
perceived visual signal quality according to its statistical
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characteristics and human perceptual mechanism, which is
widely required in numerous image processing applications.
IQA plays a vital role in guiding many visual processing
algorithms and systems, as well as their implementation,
optimization and verification [1]–[4]. In particular, image
compression is one of the most representative applications of
IQA, which can be utilized in the rate-distortion optimiza-
tion process to obtain compressed images with better visual
quality at the same bit-rate level [5]–[10]. The traditional
image compression methods mainly utilize the signal-fidelity
based quality metrics, which are less correlated with human
perceptual quality, e.g., MAE (mean absolute error), MSE
(mean square error), SNR (signal-to-noise ratio), PSNR (peak
SNR) and their relatives. Although these metrics possess many
favorable properties, e.g., clear physical meaning and high
efficiency for calculation, they severely hinder the compres-
sion performance improvement in further reducing the visual
redundancies in images due to their poor consistency with
human visual perception.

To obtain more consistent measures with human visual per-
ception, many perceptual quality metrics have been proposed
during the recent years. According to the availability of a
reference image, these methods can be divided into three
categories, i.e., full reference (FR) ones where the pristine
reference image is available, reduced reference (RR) ones
where partial information of the reference image is available
and no reference (NR) ones where the reference image is
unavailable. For image compression problem, the reference
images are available at the encoder side such that the FR-IQA
algorithms are applicable. By contrast, for image restora-
tion or enhancement problems, where the reference image is
in absence, robust NR-IQA algorithms are required.

The well-known Structural SIMilarity (SSIM) index [11]
measures the patch similarity between the reference and dis-
torted images instead of the pixel-level distortion calculation.
It is based on the assumption that the human visual system
(HVS) tends to perceive the local structures and achieves
more consistent results with subjective quality assessment on
popular databases. Furthermore, its variants, e.g., Multi-Scale
SSIM (MS-SSIM) [12], Feature similarity index (FSIM) [13],
Information Weighted SSIM (IW-SSIM) [14], further improve
the quality assessment performance by measuring local
structure distortions in different spaces. Considering that the
gradients are sensitive to distortions, the gradient magnitude
similarity is utilized in IQA algorithms e.g., Gradient
Magnitude Similarity (GSM) [15] and Gradient Magnitude
Similarity Deviation (GSMD) [16], which achieve comparable
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performance with SSIM and its variants with fewer
computation complexities. The Visual Information Fidelity
(VIF) [17] and Information Fidelity Criterion (IFC) [18] are
another kind of FR-IQA methods introducing the natural
scene statistics (NSS) into image fidelity measurement, which
can well quantify the loss of the information that could be
extracted by the brain.

Besides the FR-IQA, there are also many NR-IQA and
RR-IQA algorithms which mainly utilize the NSS and human
visual features. Mittal et al. [19] proposed blind/referenceless
image spatial quality evaluator (BRISQUE) algorithm to
assess general distorted images by utilizing a NSS model
of locally normalized luminance coefficients. Zhai et al. [20]
and Gu et al. [21] introduced the free-energy principle from
human brain theory to model the perception and understanding
of an image as an active inference process, and designed
HVS-inspired features to qualify image quality. Ye et al. pro-
posed a Codebook Representation for No-Reference Image
Assessment (CORNIA) algorithm, which utilizes the learned
features from the raw-image-patches instead of hand-crafted
features to improve the IQA generalization. There are also
many other NR-IQA algorithms designed for different kinds
of distortions, e.g., the JPEG and JPEG2000 compression
distortions [22], [23], the deblocked images [24] and so on.

These well designed IQA algorithms have achieved more
consistent results with human visual perception compared with
signal-fidelity based IQA algorithms on many calibrated public
databases, e.g., LIVE [25], [26] and TID2008 [27]. Although
the correlation coefficients between some IQA algorithms and
subjective scores are even up to more than 0.9 on existing
databases, they are still obviously inconsistent with subjective
results for some cases especially in distinguishing the subtle
quality difference in practice. This problem is more prominent
in perceptual-based image compression application, the target
of which is to achieve the most visually pleasing quality
at given bitrates. Meanwhile, the perceptual image qualities
generated from different coding parameters, e.g., prediction
modes and partition modes etc [28], are quite close. Moreover,
given a target bitrate, there may not be significant quality
differences when applying different rate control algorithms to
predict quantization parameter (QP) values.

To the best of our knowledge, most of the existing IQA
databases usually contain limited distortion levels (5-6 levels)
covering the whole quality range from “Bad” to “Excellent”,
which make the images in adjacent distortion levels obviously
different and easy to rank. In the following of the paper, we use
the terms “coarse-grained” and “fine-grained” to describe the
obvious and subtle quality differences between two images.
More specifically, the images with “fine-grained” quality dif-
ference correspond to the compressed ones generated using
different optimization methods at the same or approached
bitrate, while the images with “coarse-grained” quality differ-
ences correspond to the compressed ones generated using the
same codec at obvious different bitrates in this paper. There-
fore, these databases with coarse-grained distortion variations
for the same image may not be able to provide sufficient
information to further improve the performance of IQA algo-
rithms in evaluating fine-grained quality differences. We think

that this may be one of the reasons why the improvement of
image compression is marginal when applying the state-of-
the-art IQA algorithms to rate-distortion optimization process.
Another weakness for the existing IQA databases is that
they only contain a few reference images with limited visual
content, e.g., about 20-30 reference images. Although the
Waterloo Exploration Database [29] is the latest one with
large-scale reference images which contains 4,744 pristine
natural images and 94,880 distorted images, it is impossi-
ble to perform subjective experiments on them. As such,
the authors have to rank them using several most-trusted
FR-IQA measures and determine the pairwise preference when
the prediction score is relative large, which is also a coarse-
grained quality database.

In this paper, we push the IQA research beyond its current
scope, and promote the IQA in the new challenges of the
fine-grained quality assessment task by constructing a large-
scale IQA database with fine-grained distortion differences.
In the new database, we carefully select 100 reference images
with different real-world contents, and compress them into
3 target bitrates. At each target bitrate, each reference image
is compressed by JPEG encoders with four optimized quanti-
zation schemes, and this configuration satisfies the practical
perceptual-based image compression scenario that aims at
achieving best visual quality at the same bitrate. Therefore,
each reference image corresponds to 4 distorted images at
the given bitrate, and there are 1200 distorted images in total
for all three target bitrates. Since the quality differences are
marginal among every 4 distorted images corresponding to the
same reference image, they are difficult to be distinguished
from single stimulus subjective experiments. To provide the
faithful rank on the quality of these images, the pair-wise com-
parison subjective experiments are conducted to rank every
4 distorted images corresponding to the same reference image,
which lead to 1800 comparisons for all the distorted images.
We invited 30 subjects in the subjective experiments and up
to 54,000 comparisons are conducted. Finally, we analyze
16 state-of-the-art IQA algorithms on the proposed database,
and show that there is still a large room to improve the IQA
in the prediction of the fine-grained quality preference.

This database is constructed to provide benchmark for
compressed image quality assessment, and also benefit for
perceptual-based image compression. This is because that,
the existing compressed image quality databases with coarse-
grained quality differences are inefficient to evaluate IQA
methods on images with fine-grained quality differences.
However, in perceptual-based image compression problem, for
each coding block there are many coding modes to select
according to their rate-distortion costs. These distortion dif-
ferences generated by different coding modes are fine-grained.
Therefore, the proposed database can help researchers in image
compression community to select the best IQA method to do
the perceptual based image optimization.

The remainder of this paper is organized as follows.
Section II reviews the related works for IQA databases and
perceptual-based image compression. Section III introduces
the proposed fine-grained IQA database construction including
the data generation and subjective experiments. Section IV
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TABLE I

SUMMARY OF IQA DATABASES WITH COMPRESSION DISTORTIONS

presents the detailed analysis of the popular IQA algorithms on
the proposed fine-grained IQA database. Finally, we conclude
this paper in Section V.

II. RELATED WORK

A. IQA Databases and Challenges

Several IQA databases have been released in recent
years and widely utilized in evaluating the image quality
assessment algorithms [25]–[27], [33]–[36]. Sheikh et al. [25],
[26] created the well-known LIVE database which contains
29 reference images and 779 distorted images with five
distortion types: JPEG2000 compression, JPEG compression,
white noise, Gaussian blur and transmission errors. The
perceptual quality of these images corresponds to the Mean
Opinion Score (MOS), which is obtained from subjective
experiments. The LIVE database adopts the single stimulus
categorical rating method [37], where the subjects were asked
to provide their perceptual quality on each image in the five
categories “Bad”, “Poor”, “Fair”, “Good” and “Excellent”,
which are converted to the values 1, 2, 3, 4 and 5 when
calculating the MOS. Around 20-29 human observers rated
each image. For each distortion type, the perceptual quality
of these distorted images roughly covered the entire quality
range. However, each kind of distortion types only has very
limited distortion levels, which make them relatively easy to
distinguish by subjects. The average bitrate increase between
consecutive JPEG compression distortion levels used in LIVE
is more than 60% for the same image, which is not practical
in perceptual-based image compression optimization among
different coding modes.

The TID2008 [27] is another large-scale database containing
1700 distorted images, which is generated from 25 reference
images with 17 types of distortions for each reference image,
including JPEG and JPEG2000 compression, Gaussian noise,
Gaussian blur, etc. There are 4 different levels for each
distortion type. The MOS is obtained from 838 subjective
experiments carried out by 838 observers using pair-wise
comparisons with forced-choice method, which can obtain
more stable subjective quality rank by reducing the insecurity
of the observers for the quality distribution in the whole
database. Ponomarenko et al. further extended the TID2008 to
TID2013 with more distorted images by generating 24 types of

distortions for each image. However, the number of distortion
levels is maintained to be 5 in TID2013 for each distortion
type [34]. In particular, for JPEG compressed images, the aver-
age bitrate increase between consecutive JPEG compression
distortion levels is around 77% for each image, which makes
the compression distortions in different levels easy to distin-
guish.

The CSIQ [35] is another popular image quality assessment
database, which uses totally different reference images from
those in LIVE, TID2008 and TID2013, where most of the ref-
erence images are from Kodak test images. The CSIQ database
consists of 30 reference images including five categories, i.e.,
animals, landscapes, people, plants and urban. Each reference
image is processed by adding one of the six distortions (JPEG
compression, JPEG2000 compression, contrast decrements,
additive pink Gaussian noise, additive white Gaussian noise
and Gaussian blurring) with four or five levels. In total,
there are 866 distorted images, which are evaluated by multi-
stimulus subjective experiments to collect 5,000 subjective
ratings from 25 different observers, and finally the differential
mean opinion scores (DMOS) are obtained.

The CID2013 [38] is a more complex database for NR-
IQA and the distorted images are contaminated by many
concurrent distortion types, such as real photographic images
captured by different digital cameras. There are 480 images
captured with 79 different cameras in CID2013, and each
image is evaluated by 26-30 subjects using a hybrid absolute
category rating-pair comparison. The MCL-JCI dataset [33] is
a special database which focuses on the JPEG compressed
images and measures the just-noticeable difference (JND)
points. It consists of 50 reference images with resolution
1920 × 1080 and 100 JPEG compressed images for each
reference image with the quality factor (QF) ranging from 1 to
100. Each individual set of compressed images was evaluated
by 30 subjects in a controlled environment. The application
of the JND to compressed image quality assessment was also
discussed in [39].

There are also many other databases developed in the
literature, e.g., in [30], [31], [36], and [40]. However, all of
them utilized coarse-grained distortion levels, and they are
still in small scale which may be not enough to evaluate
IQA algorithms. The summary of the database information is
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TABLE II

THE PERFORMANCE COMPARISON FOR DIFFERENT IQA METHODS ON
JPEG COMPRESSED IMAGES IN LIVE DATABASE

illustrated in Table I. To show the challenges of IQA in fine-
grained quality difference, we carry out a sanity check that
selects the JPEG compressed images with the bitrates about
0.3bpp in LIVE database to calculate the three correlation
coefficients, i.e., SROCC, KRCC and PLCC, between MOS
and the scores from different IQA algorithms. The results are
shown in Table II. We can see that the correlation coeffi-
cients for the distorted images with approximate bitrates are
much lower than those calculated by involving all the JPEG
compressed images with different levels in LIVE database.
In particular, all the three correlation coefficients are lower
than 0.57 for JPEG images with the bitrate approximating
0.3bpp. By contrast, most of these correlation coefficients are
larger than 0.9 for all the compressed images with coarse-
grained quality levels. These results reveal two limitations of
the existing IQA databases:

1) The MOS values of the existing databases constructed
from single stimulus subjective experiments may not be
accurate enough for fine-grained quality image assess-
ment.

2) The existing IQA algorithms have not been sufficiently
evaluated on fine-grained quality prediction.

B. IQA in Visual Data Compression

Although image coding standards have normalized the
bitstream, various coding parameters or modes determined
according to different IQA metrics will lead to obviously dis-
tinct compression performance. In JPEG, one of the optional
coding parameters is the customized quantization table, and
the default table is determined empirically based on human
perception [41]. For example, the quantization table of lumi-
nance component at quality factor (QF) equal to 50 is shown
in Fig.1(a), which is scaled to generate quantization tables for
other quality factors. Besides the JPEG default quantization
table, the open source and well optimized JPEG codec, lib-
jpeg [42], adopted another 8 quantization tables, and one of

Fig. 1. Examples of quantization table and the corresponding compressed
JPEG images. (a) JPEG default quantization table at quality factor equal to
50; (b) Optimized quantization table with the optimization goal of MS-SSIM;
(c) JPEG image using default quantization table at QF = 10, 0.234 bbp,
PSNR = 30.45, SSIM = 0.819, MS-SSIM = 0.946; (d) JPEG image using
MS-SSIM optimized quantization table, 0.226 bpp, PSNR = 30.49, SSIM =
0.818, MS-SSIM = 0.953.

them is an optimized quantization table based on MS-SSIM
as shown in Fig.1(b).

In [43] and [44], the researchers proposed the image
dependent quantization table optimization based on the signal-
fidelity based metric, MSE, which achieved significant bit-rate
saving at the same quality measured by PSNR. However, these
optimization strategies cannot ensure the same visual quality
improvement due to the poor correlation between the percep-
tual quality and PSNR. In [5], [7], and [45], the researchers
introduced SSIM and its variants into image and video coding
to optimize the rate distortion process, but the performance
improvement is not so satisfying yet. Channappayya et al. [5]
derived the upper and lower bounds on the average SSIM index
as a function of quantization rate for different source distri-
butions e.g., uniform, Gaussian and Laplacian distributions,
for the first time. Wang et al. [7] utilized SSIM as the quality
metric in rate distortion optimization instead of the MSE and
achieved about 5%-10% bit-rate saving compared with original
H.264/AVC. Ou et al. [45], applied SSIM to perceptual rate
control problem achieving 0.008 SSIM gain (corresponding to
14% bitrate saving). From these work, we can see that the
quality improvements are still small.

In essence, regarding the perceptual-based image compres-
sion, although various encoding optimization strategies can
improve the image quality at the same bit-rate level, the quality
fluctuations are usually limited within a small range. However,
most of the traditional IQA databases only contain coarse-
grained compression distortion levels, and they cannot well
evaluate IQA algorithms on the fine-grained quality prediction
for image compression problem. For example, the JPEG
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Fig. 2. Sample reference images in the FG-IQA database.

images in Fig.1(c) and 1(d) are compressed at the similar
bitrates using the scaled quantization tables in Fig.1(a) and
1(b), respectively. Although the image in Fig.1(d) shows fewer
blocking artifacts, it has a lower SSIM value but higher
PSNR and MS-SSIM values compared to the image shown
in Fig.1(c). These different IQA algorithms show opposite
quality rankings on the fine-grained distortion levels, which
motivates us to revisit the existing IQA algorithms and
investigate their appropriateness in distinguishing fine-grained
distortions. In view of this, we construct the first fine-grained
IQA database (FG-IQA) in large scale for compressed images
to advance the development of the fine-grained IQA and
perceptual-based image compression.

III. THE FINE-GRAINED DATABASE CONSTRUCTION FOR

IMAGE QUALITY ASSESSMENT

A. Data Preparation and Processing

The scale and content diversity are two important factors
for a database to better explore the visual quality problem and
evaluate the existing IQA algorithms [46]–[50]. Different from
the previous database which only contains 20-30 reference
images, we take advantage of plentiful image content in the
Waterloo Exploration Database and carefully select 100 refer-
ence images from them, which contain men, women, buildings,
indoor/outdoor scenes, cars, airplanes, statue, food, animals
and plants, etc. Some examples of these reference images are
shown in Fig.2. The resolutions of these images range from
400 × 400 to 723 × 480.

In the proposed FG-IQA database, we focus on the block-
based compression distortions, where JPEG compression is
utilized. We utilized the JPEG codec developed by the Inde-
pendent JPEG Group [51] with four categories of quantization
tables generated according to different principles. The first cat-
egory is the default table of JPEG standard (denoted as T (J ))
and one example is shown in Fig.1(a) at QF equal to 50, and
for the other compression ratio, the corresponding quantization
tables are derived based on the following equations,

s = (QF < 50) ? (5000/QF) : (200 − 2QF), (1)

T (J )
Q F = (s ∗ T (J )

50 + 50)/100. (2)

TABLE III

THE BITRATE DISTRIBUTION FOR THREE SCENARIOS

The second category of quantization table denoted as T (U ) is a
uniform matrix, which is also widely utilized in compression.
The third category of quantization table denoted as T (P) is
the derived for individual images based on the rate-distortion
optimization according to PSNR [43], and the corresponding
source code can be downloaded from website.1 The last
category of quantization table is an optimized one according
to MS-SSIM denoted as T (M), which is implemented in the
open source JPEG codec, libjpeg [42].

For each reference image, we first apply the JPEG codec
with default quantization table to compress reference images
into three target quality levels with QF equal to 10, 30 and
50, corresponding to low, middle and high bit-rate scenarios,
respectively. The corresponding three bitrates are denoted as
b1, b2 and b3. For each bitrate, we apply the other three quan-
tization table derivation methods by exhaustively searching all
possible quantization tables in their own quantization space.
As such, the corresponding optimal ones with the closest
bitrate for each compressed image using the JPEG default
quantization table can be obtained. For example, one reference
image is firstly compressed at bitrate b1 using JPEG default
quantization table. Then, for the quantization table T (U ),
we compress the reference image using the uniform quanti-
zation table with the elements from 1 to 255 and compare its
bitrate with b1. The compressed image using T (U ) is selected
when it has the minimum bitrate deviation from b1. Similar
process is applied to other categories of quantization table
derivation methods. For all three bitrate scenarios, we can
generate all the JPEG compressed images with fine-grained
distortion levels at each target bitrate.

After the process, the average bitrate deviations from the
target ones are 0.007%, 0.002% and 0.54% at b1, 0.01%,
0.0007% and 0.28% at b2, 0.07%, 0.003% and 0.31% at b3
for T (U ), T (P) and T (M) on average respectively. The bitrate
for most distorted images using non-default quantization table
is within 0.5% deviation from the target ones generated by
JPEG default quantization table. The bitrate distribution of the
proposed FG-IQA database is illustrated in Table III. Here,
the STD of bitrate means the average of bitrate standard
deviation for every four distorted images at each bitrate case.
We can see that each reference image is compressed by dif-
ferent quantization tables into very approximate bitrate, which
can well simulate the practical circumstances in perceptual-
based image coding. The overall bitrate is relative large
because the chroma components consume too many bits due
to the all 1 quantization table, and the actual bitrates for
luminance component at 0.26bpp, 0.64bpp and 0.92bpp.

1http://pages.cs.wisc.edu/~ratnakar/rdopt.html
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Fig. 3. Examples of distorted images compressed by JPEG at bitrate b1,
using quantization tables T (J ), T (U), T (P) and T (M) for (a)∼(d), respective.
(a) PSNR = 31.2154, SSIM = 0.9085, MS-SSIM = 0.9890, VIF = 0.6122,
bitrate = 1.5891 bpp, (b) PSNR = 31.8654, SSIM = 0.9039, MS-SSIM =
0.9809, VIF = 0.4950, bitrate = 1.5904 bpp, (c) PSNR = 31.5465, SSIM =
0.9041, MS-SSIM = 0.9834, VIF = 0.5053, bitrate = 1.5878 bpp and (d)
PSNR = 31.5892, SSIM = 0.9109, MS-SSIM = 0.9887, VIF = 0.5981,
bitrate = 1.5895 bpp.

Since HVS is more sensitive to the luminance and most
IQA algorithms are only applied on luminance component,
we apply different quantization tables to luminance compo-
nent. For the quantization table of the chroma components,
all elements are set as 1, and this avoids the influence of the
compression distortions in chroma components. In addition,
although the distortions only generated in luminance com-
ponents, but the distortions can be spread to all the R, G,
B components due to the conversion of luminance values,
Y = 16+0.2568R+0.5041 G+0.0979B. Therefore, we adopt
the color images for the database, which are more popular than
gray images. Fig.3 shows some images at bitrate b2 with the
four quantization methods. We can see that although these
images are almost with the same bitrate, they show different
perceptual qualities, where the subjective quality of Fig.3(a)
with fewer blocking artifacts is obviously better than that of
Fig.3(b). As such, there are quality differences but it is difficult
to distinguish them using the single stimulus categorical rating
method in subjective experiment as that in most of the IQA
database.

B. Subjective Experiments

To accurately distinguish the qualities of these images
with fine-grained difference, we take the ordering by

Fig. 4. Screen-shot of the software used in our subjective experiments. Each
pair images corresponds to the same reference image compressed by JPEG
into approximate bitrate using differen optimization methods.

force-choice pairwise comparison method [37] in our subjec-
tive experiment, which is more reliable and stable than indi-
vidual single-stimulus evaluations by reducing the variations
among researchers due to no reference for quality standard.
In the subjective experiments, we invite 30 undergraduate
and graduate students as subjects. The distorted images in
each bitrate case are divided into two batches equally. Then,
each batch contains 200 distorted images generated from
50 reference images. Then, the subjective experiments can be
performed batch by batch, and it needs about 40-50 minutes to
finish all the judgements in one batch. In the experiment, one
subject can finish the evaluation of several batches at different
time. This strategy can further reduce the instability due to
fatigue.

To ensure the accuracy, we compare all the combinations
for the distorted images corresponding to the same reference
image instead of using the balanced incomplete block designs
to reduce the trials [52]. In each subjective experiment,
the subjects are shown a pair of distorted images corre-
sponding to the same reference image compressed by JPEG
with different optimization methods. The subjects are asked
to view the two distorted images with a specified viewing
distance (around 2-2.5 screen heights) and are always forced to
choose one image with better quality even if they are difficult
to distinguish them (i.e., a forced-choice design). There are
6 comparisons for 4 compressed images corresponding to the
same reference image, i.e.,

� = {(IT (J ), IT (U) ), (IT (J ), IT (P) ), (IT (J ), IT (M) ),

(IT (U) , IT (P) ), (IT (U) , IT (M) ), (IT (M) , IT (P) )}, (3)

where IT (∗) represents the compressed image I using the
quantization table T (∗) at the same target bitrate. Therefore,
each batch needs to perform 300 comparison trials, the order
of which is randomly generated. The GUI of the developed
subjective software is shown in Fig.4, which is run on Win-
dows OS PC with screen resolution 1920 × 1080 placed in
laboratory with normal indoor lighting.

C. FG-IQA Database Summary

After the subjective experiments, we further process the sub-
jective results and organize the database to be convenient for
evaluate. In our subjective experiments, there are 600 compar-
isons for 400 distorted images at each bitrate scenario, in total
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TABLE IV

THE PREFERENCE NUMBER OF PAIRWISE COMPARISONS AT DIFFERENT BITRATE SCENARIOS, AND THE
STATISTICAL DISTRIBUTION OF THE IMAGES WITH BETTER QUALITY

Fig. 5. The score distribution of the FG-IQA database at different bitrate
scenarios.

1800 comparisons for the three bitrate scenarios. For each
comparison, 30 subjects are required to provide force choice
for better quality image, which leads to 54,000 subjective
experiments in total.

The final statistical results of the subjective experiments
for the three bitrate scenarios are illustrated in Table IV and
Fig.5. In Table IV, the preference probability reflects the
reliability of pair-wise comparisons, which is calculated based
on the percentage of subjects for the image with better quality.
For example, the preference probability >90% means that
for one comparison, more than 90% of the subjects do the
same selection. The “preference number” column indicates the
selection amount corresponding to the preference probability.
The 4th ∼ 9th columns show the image distribution with
better quality between the every comparison. For example,

the element (24,0) in the 2th row and 4th means that there
are 24 images with better quality compressed by JPEG using
quantization table T (J ) and 0 images compressed by JPEG
using T (U ), and the preference probability of these comparison
results are beyond 90%.

From Table IV, we can see that for b1 case, there are 276,
119, 99, 61 and 45 comparisons with their preference proba-
bility more than 90%, 80%, 70% and 60% respectively, while
for b2, the corresponding numbers are 134, 150, 116, 117 and
83, and for b3 the corresponding numbers are 97, 92, 137,
154 and 120. These results show that although these images
are compressed into close bitrates with fine-grained quality
difference, subjects can still perceive the quality variations
with high probability. In addition, at low bitrate, the fine-
grained quality difference is easier to be perceived compared
with that at high bitrate.

To show the image distribution with better quality directly,
we assign a score for each comparison in Eq.(3), i.e., 1 is
assigned when the first image in a pair has better quality, while
0 is assigned when the second image has better quality. Fig.5
shows the image distribution with better quality, where the
horizontal axis represents the index of the six combinations in
Eq.3, and the average scores of the vertical axis are calculated
as,

si = (0 ∗ pi,0 + 1 ∗ pi,1), (4)

μ = 1

100

100∑

i=1

si , (5)

where pi,0 and pi,1 are the subject percentages for the i th

comparison pair with scores 0 and 1 respectively at a given
bitrate. The error bars in Fig.5 represent the standard deviation
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of the scores in Eq.4, which is calculated as,

σ =
√√√√ 1

100

100∑

i=1

(si − μ)2. (6)

From the results, we can see that the perceptual quality
of the compressed images using JPEG default quantization
table and MS-SSIM based optimized quantization table is
obviously better than those using uniform quantization table
and PSNR based optimized quantization table respectively
for all three bitrate scenarios. At low bitrate b1, the qual-
ity of the compressed images using PSNR and MS-SSIM
based optimized quantization tables are better than that of
compressed images with JPEG default quantization table and
uniform quantization table respectively. However, at middle
and high bitrate scenarios, b2 and b3, the perceptual quality of
compressed images using default quantization table is superior
to that of compressed images using PSNR based optimized
quantization table, and even better than that using MS-SSIM
based optimized quantization table at high bitrate scenario b3.

Moreover, we can see that the existing quantization table
optimization techniques both targeting for PSNR and MS-
SSIM still cannot achieve the optimal perceptual quality. One
of the important reasons may be that the existing image quality
assessment methods can only predict the image perceptual
quality in coarse levels, but they are not well correlated
with HVS in fine-grained level. The performances of these
optimized image compression methods targeting for different
IQA metrics are unstable and inconsistent. Therefore, more
efficient IQA algorithms and databases are demanded to fur-
ther advance the perceptual-based image processing, especially
for the image compression application.

IV. BENCHMARK ANALYSIS AND

EXPERIMENTAL RESULTS

A. Evaluation Methods for IQA Models

One of the main objectives of the FG-IQA database is to
evaluate the performance of different IQA models, i.e., how
well an objective metric agrees with subjective preferences
of subjects. In the IQA field, the Kendall rank correlation
coefficient (KRCC) [53], Spearman rank-order correlation
coefficient (SROCC) [54] and Pearson linear correlation coef-
ficient (PLCC) are three widely used measures to evaluate the
IQA metrics. Herein, the KRCC is calculated as,

KRCC = nc − nd

0.5n(n − 1)
, (7)

where n is the length of the ranking (n = 4 for our database),
nc is the number of concordant pairs and nd is the number
of discordant pairs over all pairs of entries in the ranking.
The SROCC measures the monotonic relationship between two
vectors, e.g., MOS and the objective scores calculated from
IQA algorithms, and PLCC measures their linear correlation.
Herein, we take the Bradley-Terry model [55] to derive the
MOS from pairwise comparison results. The three correlation
coefficients are in the range of [−1, 1], and the larger coef-
ficients correspond to more consistency between two vectors.
More specially, the correlation coefficients are equal to 1 in

case of the perfect agreement and −1 indicates the case of
perfect disagreement. In the case of correlation coefficients
equalling to 0, the rankings are considered to be independent.
In particular, since for each image content there are only
4 compressed versions, the amount is not enough to perform
the nonlinear regression with four or five parameters [26],
[56] before calculating PLCC as the common ways in the
IQA field. Therefore, we directly calculated the PLCC without
performing the regression process in this paper.

B. Benchmark Analyses and Experimental Results

To analyze the efficiency of IQA algorithms, we apply
15 state-of-the-art full reference image quality assessment
methods on the proposed FG-IQA database, to investigate
their performance and demonstrate the new challenges in
fine-grained image quality assessment problem. The FR-IQA
algorithms include PSNR, PSNR-HVS (PSNR with HVS
properties) [57], VSI [58], SSIM [11], IW-SSIM [14], MS-
SSIM [12], FSIM [13], RFSIM [59], SR-SIM [60], UQI [61],
GSM [15], GSMD [16], VIF [17], IFC [18], MAD (Most
Apparent Distortion) [35], and one CNN based IQA method,
WaDIQaM-FR [62]. The implementations of all algorithms are
obtained from the authors or public websites. Here, the CNN
model for WaDIQaM-FR is trained on TID2008 images.

First, we evaluate the pairwise preference consistency using
the classic correlation coefficients KRCC, SROCC and PLCC,
as shown in Table V. The KRCC, SROCC and PLCC are
the average values for the distorted images of the same
reference image, and the top 2 correlation coefficient values
are highlighted. We can see that the PSNR is poorly correlated
with human perceptual quality, and even contrary to subjective
results on average for different bitrate scenarios. Combining
the HVS features, the PSNR-HVS and VSI achieve more
consistent results with the subjective results. More interest-
ingly, the SSIM and its variations also show diverse results
on the FG-IQA database. Although the SSIM achieves good
correlation with human perceptual quality on existing coarse-
grained databases, it is poorly correlated with human percep-
tual quality in fine-grained quality assessment, especially at
high bitrate coding scenario. However, the variations of SSIM
achieve much better correlated results with subjective results,
especially MS-SSIM and IWSSIM, which introduce additional
HVS features to improve the performance of SSIM. The MS-
SSIM takes advantage of the multi-scale SSIM to capture
the contrast sensitivity characteristics of HVS, i.e., the con-
trast sensitivity decreases along both high- and low-frequency
directions. The IWSSIM exploits the information content to
weight local SSIM values in the pooling stage, which also
utilizes the same HVS features by calculating the weights
in Laplacian pyramid decomposition images with five scales.
The other methods also achieve comparable performance but
these correlation coefficients are obviously lower than those
on the existing databases with coarse-grained distortion lev-
els. Specifically, the performance of WaDIQaM-FR is also
poor on the proposed database, and this may because the
training data with coarse-grained quality levels is different
from the proposed database with fine-grained quality levels.



ZHANG et al.: FINE-GRAINED QUALITY ASSESSMENT FOR COMPRESSED IMAGES 1171

TABLE V

THE KRCC, SROCC AND PLCC FOR DIFFERENT IQA ALGORITHMS AT DIFFERENT BITRATE SCENARIOS

Fig. 6. Preference consistency ratios of different IQA algorithms on the proposed FG-IQA database at different preference probability ranges.

For the three correlation coefficients, these IQA methods
shows similar characteristics. As a whole, MS-SSIM and IW-
SSIM achieve top 2 performance for most cases, and the
GSMD and IFC achieve better results at high bitrate scenario
while MAD performs better at low bitrate case.

In addition, we analyze the relationship among different
IQA algorithms by calculating their KRCC in Table VII
and Table VIII to reveal their reliability in FG-IQA. From
Table VII, we can see that these IQA algorithms show poor
correlation, and there are even some negative values between
IQA algorithms, e.g., PSNR&PSNR-HVS, PSNR&IWSSIM,
PSNR&UQI, PSNR-HVS&MAD and SSIM&IFC etc. More-
over, we also calculate the KRCC for the objective quality
of every combination of these IQA algorithms for images at
all bitrate scenarios. The distortion levels are distinct among
different bitrate scenarios, and there are both fine-grained and
coarse-grained distortion levels in the database combined by
all the images. From Table VIII, we can see that all the
IQA algorithms illustrate positive correlation, and even high

TABLE VI

THE KRCC FOR DIFFERENT IQA ALGORITHMS ON

DIFFERENT TYPES OF IMAGES

correlation (up to 0.86 is observed) for many IQA algorithms.
These results further prove that although existing IQA algo-
rithms have achieved great success in predicting the human
perceptual quality for coarse-grained quality differences, they
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TABLE VII

THE KRCC OF THE OBJECTIVE QUALITY BETWEEN DIFFERENT IQA ALGORITHMS FOR JPEG IMAGES USING T (J ) AT BITRATE b2

TABLE VIII

THE KRCC OF THE OBJECTIVE QUALITY BETWEEN DIFFERENT IQA ALGORITHMS FOR JPEG IMAGES USING T (J ) AT ALL THE THREE BITRATES

are still inefficient in predicting human perceptual quality in
fine-grained quality differences. Moreover, it is a more chal-
lenging problem for fine-grained image quality assessment.

Based on the research in [46]–[50], image content also
has influence on subjective quality estimation. We select
15 portrait images and building images respectively from the
proposed database, where the portrait images with simple
structures compared with that of building images. We find
that the average preference probability for the portrait images
is 81%, while for building images it is 79%, which show that
the quality assessment is easier for subjects on images with
simple structures. We further explore the IQA performance
on these images using MS-SSIM, IWSSIM, IFC and VIF,
which perform better than others on the proposed database.
Table VI shows their KRCC values on portrait and building
images respectively. We can see that MS-SSIM performs much
better on portrait images than that on building images since

it applies low-pass filters to images to estimate quality with
multi-scale images, which may filter out some high-frequency
information in building images with complex structures. How-
ever, the information loss based IQA methods, IWSSIM, IFC
and VIF, can well capture the complex structures especially
in middle and high frequency, and achieve better performance
on building images. Therefore, the quality assessment is also
closely related with the image content, which is an important
clue for the further IQA research.

To visualize the performance of IQA algorithms, the pair-
wise preference consistency ratios in terms of different sub-
jective preference probability are illustrated in Fig.6(a) and
Fig.6(b). Herein the pairwise preference consistency ratio is
defined as [29],

P = Mc

M
, (8)
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where M is the amount of the image pairs, Mc is the number
of concordant pairs of an IQA model, i.e., the accuracy
ratio of the IQA model predicting the correct preference.
In Fig.6(a), the GSM and GSMD achieve the same accuracy
ratio, and the IFC and VIF are also the same accuracy on
average. From the results, we can see that VSI, MS-SSIM,
IWSSIM, FSIM, SRSIM, UQI, MAD, IFC and VIF achieve
more consistent results with subjective results, where the
accurate ratio increases along with the preference probabil-
ity. However, PSNR, PSNR-HVS, SSIM, RFSIM, GSM and
GSMD show accuracy degradation in high preference prob-
ability intervals to some extent, especially SSIM, GSM and
GSMD showing obvious accuracy decrease when preference
probability is beyond 80%. The PSNR and RFSIM metrics
show more interesting results, as they almost have the opposite
judgements against subjective results. Even in the highest pref-
erence probability interval, they only achieve 50% accuracy
ratio, which almost approximates to random results. These
results prove that some existing IQA models perform poorly
in distinguishing the fine-grained distortion levels, which are
feasible to determine by human visual system. Therefore, these
metrics may not be suitable for perceptual-based image com-
pression because the distortion differences between various
coding modes are usually marginal. Moreover, the fine-grained
image quality assessment is demanded and should be evaluated
on the FG-IQA databases.

V. CONCLUSION

In this paper, we have proposed a new and large scale
IQA database with fine-grained distortion levels, targeting to
advance the development for both the fine-grained quality
assessment and perceptual-based image compression. The
reliable subjective experiment with pair-wise comparison is
utilized to rank the qualities of these distorted images. We also
provided in-depth analyses for state-of-the-art IQA algorithms
on the proposed FG-IQA database, and showed new challenges
for fine-grained IQA. The FG-IQA database is made publicly
available to facilitate future IQA research. The proposed
database can be utilized to evaluate IQA algorithms and pro-
vides more accurate and comprehensive evaluation jointly with
existing coarse-grained IQA databases. In addition, the latent
factors influencing perceptual quality for images produced by
the block-based image compression will also be investigated
in our future work.
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